
Exercice 3 Photoconduction

On considère un échantillon de silicium de type n éclairé sur une face. On suppose que l'on est en régime de faible injection.

On définit l'intensité I_0 de l'éclairement (watt/cm²) qui pénètre dans le semiconducteur. On suppose que :

- L'éclairement est monochromatique de longueur d'onde $\lambda = 500$ nm
- Chaque photon libère une paire électron trou

Le coefficient d'absorption α du semiconducteur à la longueur d'onde $\lambda = 500$ nm est $\alpha = 10^4$ cm⁻¹.

- 1. Déterminer le taux de génération g(x) des paires électron trou dans le semiconducteur
- 2. Ecrire l'équation de continuité relative aux trous (on supposera que le champ électrique est négligeable).
- 3. Résoudre l'équation différentielle. Déterminer $\Delta p(x)$.

Comme condition aux limites, on admettra que la densité du courant de trou est nulle à l'abscisse x=0 (absence de recombinaison à la surface du semiconducteur). On supposera que l'échantillon a une épaisseur e grande vis-à-vis de la longueur de diffusion des trous.

Durée de vie des trous $\tau_p = 1 \, \mu m$, constante de diffusion des trous $D_p = 25 \, 10^{-4} \, m^2 s^{-1}$.

4. Montrer que la variation de la densité de trous peut se mettre sous la forme :

$$\Delta p(x) = \Delta p(0) \exp(-x/L_p)$$

L_p longueur de diffusion des trous

Déterminer $\Delta p(0)$

5. Déterminer un taux de génération moyen G_L des porteurs par unité de temps et par unité de volume.