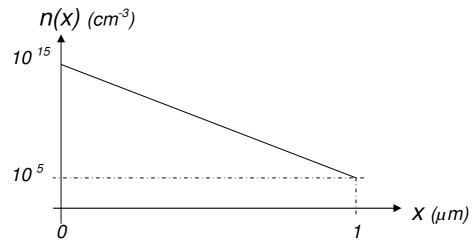
Contrôle de cours

Vendredi 13 mars 2009

Durée: 20 minutes – Aucun document

1. Compléter les relations suivantes, permettant de relier les densités de porteurs aux niveaux d'énergies E_i (niveau de Fermi intrinsèque) et E_F (niveau de Fermi)


$$\begin{cases} n = e & \frac{E_i}{e} \\ p = e \end{cases}$$

2. Donner l'équation de neutralité électrique dans un semiconducteur de type N

3. Donner la relation d'Einstein pour les électrons :

4. Ecrire l'équation de continuité relative aux trous, en définissant tous les termes.

- 5. On considère une inhomogénéité de la densité d'électrons dans un SC, représentée sur la figure suivante.
- a) Représenter sur le schéma le sens de déplacement des électrons et le sens du courant de diffusion associé.
- b) Calculer le courant de diffusion d'électrons, en précisant son signe et son unité.

On donne : $D_n = 37.5 \text{ cm}^2 \text{s}^{-1}$

6. On considère un barreau de Silicium de type P, dont la densité d'atomes accepteurs vaut $N_a = 10^{17}$ cm⁻³. Représenter le schéma des bandes d'énergie à l'équilibre, en positionnant les niveaux d'énergie E_c , E_i , E_v et E_F à T=300 K. On fera apparaitre sur le diagramme les énergies caractéristiques. On donne : E_g (T=300 K) = 1 .12 eV, N_v =10¹⁹ cm⁻³, k_B = 1.38 10⁻²³ J.K⁻¹