TP 1 - Étude du transistor à effet de champ

Remarques préliminaires :

1- Dans ce TP nous utilisons un JFET c'est à dire un transistor à effet de champ à jonction et non pas un MOSFET qui possède une grille isolée. Le JFET canal N utilisé a des caractéristiques courant-tension similaires à celles d'un MOSFET à canal N normally on, excepté qu'ils ne supportent pas une polarisation positive sur la grille.

La polarisation d'un JFET canal N est donc :

$V_{GS} < 0$ et $V_{DS} > 0$

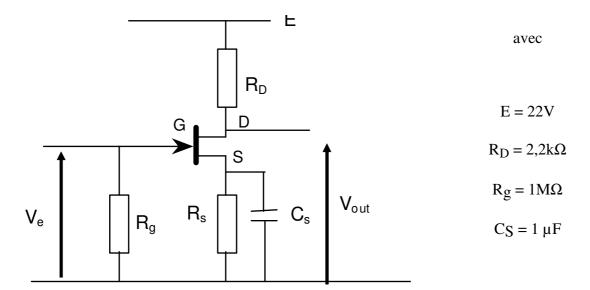
2 - Il est rappelé que tout composant a des conditions limites de fonctionnement et des performances moyennes données par le constructeur : avant tout usage d'un composant (diode ou transistor) il est donc indispensable de se reporter aux fiches constructeur (cf classeur en salle de TP).

Transistor utilisé: J-FET canal n 2N4416 ou équivalent.

I. Etude des caractéristiques statiques du transistor

I.1 Etude du réseau de caractéristiques $I_d = f(V_{ds})$ à $V_{gs} = Cte$

- A l'aide de deux alimentations, concevoir un montage permettant de tracer la caractéristique voulue.
- Câblez le montage et observez alors qualitativement les évolutions des différentes grandeurs. Déduire de ces évolutions la valeur de la tension de seuil V_T et du courant I_{dss} .
- Proposez une amélioration de ce montage afin de visualiser le réseau de caractéristiques à l'aide du mode XY de l'oscilloscope.


I.2 Étude de la caractéristique de transfert I_d = f' (V_{gs}) à V_{ds} = Cte

- Concevoir un montage permettant de visualiser cette caractéristique à l'aide du mode XY de l'oscilloscope.
- Retrouver les valeurs de V_T et de I_{dss}.

II. Étude d'un montage amplificateur à source commune

II.1 Etude statique: polarisation du montage

Soit le montage proposé sur la figure page suivante :

Modélisation:

- La capacité C_S a-t-elle une influence au niveau de la polarisation ?
- On souhaite avoir un point de polarisation tel que $I_{DSO}=I_{DSS}$ / 2.
- Avec les valeurs trouvées précédemment, déterminer la valeur de V_{GS0} correspondante.
- En déduire la valeur de R_S permettant d'obtenir un tel point de fonctionnement.
- Calculer alors V_{DS0} .

Manipulation:

- Adaptez les valeurs numériques aux composants réels. recalculez alors le point de polarisation en tenant compte de ces valeurs réelles.
- Réalisez le montage.
- Caractérisez le point de polarisation par des mesures convenables, avec et sans C_S.

II.2 Etude en petits signaux

a) Etude dans la bande passante

Modélisation:

- Faire les schémas petits signaux dans la bande passante avec et sans C_S.
- Déterminer les gains à vide avec et sans C_S.

Manipulation:

Mesurer le gain dans la bande passante avec et sans C_S. Conclusions ?

b) Influence de C_S

Manipulation:

Mesurer la fréquence de coupure basse du montage, avec et sans C_S. Conclure.

II.3 Etude en grands signaux

Manipulation:

- Choisir une fréquence de travail dans la bande passante. En utilisant un signal sinusoïdal, augmenter progressivement l'amplitude du signal jusqu'à observer les différentes déformations du signal de sortie.
- Comment interprétez vous ces déformations ?